Isolation and characterization of the Streptococcus mutans gtfC gene, coding for synthesis of both soluble and insoluble glucans.

نویسندگان

  • N Hanada
  • H K Kuramitsu
چکیده

The intact gtfC gene from Streptococcus mutans GS-5 was isolated in Escherichia coli in plasmid vector pUC18. The glucosyltransferase activity expressed by the gene synthesized both low-molecular-weight water-soluble glucan and insoluble glucan in a primer-independent manner. Purification of the enzyme by procedures that minimize proteolytic digestion yielded a purified preparation with a molecular weight of 140,000. Insertional inactivation of the gtfC gene with a streptococcal erythromycin resistance gene fragment followed by transformation of strain GS-5 suggested that the gtfC gene product was required for sucrose-dependent colonization in vitro. In addition, evidence for the presence of a third gtf gene coding for soluble glucan synthesis was obtained following the construction of mutants containing deletions of both the gtfB and gtfC genes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular cloning and characterization of the glucosyltransferase C gene (gtfC) from Streptococcus mutans LM7.

A glucosyltransferase (GTF) gene, designated gtfC, was cloned from Streptococcus mutans LM7. Its gene product was detected by screening a bacteriophage lambda library with rabbit antiserum raised against S. mutans LM7 extracellular proteins. DNA isolated from the immunopositive recombinant phage revealed two S. mutans chromosomal EcoRI fragment inserts, 8.1 and 4.7 kilobase pairs in size. Esche...

متن کامل

Role of the Streptococcus mutans gtf genes in caries induction in the specific-pathogen-free rat model.

The role of each of the Streptococcus mutans gtf genes coding for glucan synthesis in cariogenesis was evaluated by using strain UA130 in the specific-pathogen-free (SPF) rat model system. Mutants defective in either or both of the genes required for insoluble glucan synthesis, the gtfB and gtfC genes, exhibited markedly reduced levels of smooth-surface carious lesions relative to that of the p...

متن کامل

Recombination between gtfB and gtfC is required for survival of a dTDP-rhamnose synthesis-deficient mutant of Streptococcus mutans in the presence of sucrose.

The rml genes are involved in dTDP-rhamnose synthesis in Streptococcus mutans. A gene fusion between gtfB and gtfC, which both encode extracellular water-insoluble glucan-synthesizing enzymes, accompanied by inactivation of the rml genes was observed for cells grown in the presence of sucrose. The survival rates of rml mutants isolated in the absence of sucrose were drastically reduced in the p...

متن کامل

Cloning of a Streptococcus mutans glucosyltransferase gene coding for insoluble glucan synthesis.

The gtfB gene coding for a glucosyltransferase (GTF) activity of Streptococcus mutans GS-5 was isolated on a 15.4-kilobase DNA fragment by using a lambda L47.1 gene library. The activity was catalyzed by gene products of 150 and 145 kilodaltons which reacted with antibodies directed against both soluble and insoluble glucan-synthesizing GTFs. The enzyme present in crude Escherichia coli extract...

متن کامل

Phylogenetic Analysis of Glucosyltransferases and Implications for the Coevolution of Mutans Streptococci with Their Mammalian Hosts

Glucosyltransferases (Gtfs) catalyze the synthesis of glucans from sucrose and are produced by several species of lactic-acid bacteria. The oral bacterium Streptococcus mutans produces large amounts of glucans through the action of three Gtfs. GtfD produces water-soluble glucan (WSG), GtfB synthesizes water-insoluble glucans (WIG) and GtfC produces mainly WIG but also WSG. These enzymes, especi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Infection and immunity

دوره 56 8  شماره 

صفحات  -

تاریخ انتشار 1988